Theorem
Let n,p∈Z>0 be (strictly) positive integers.
Then:
k=1∑nkp=p+11i=0∑p(−1)i(ip+1)Binp+1−i=p+1np+1−1!B1⋅np+2!B2⋅p⋅np−1+4!B4⋅p⋅(p−1)⋅(p−2)⋅np−3+⋯
where:
- Bi denotes the ith Bernoulli number.
Proof
Let x≥0.
k=0∑n−1ekx=k=0∑n−1p=0∑∞p!(kx)p
=p=0∑∞(k=0∑n−1kp)p!xp
We also have:
k=0∑n−1ekx=1−ex1−enx
Sum of Geometric Sequence
=xenx−1ex−1x
multiplying numerator and denominator by x
=x1(p=0∑∞p!(nx)p−1)p=0∑∞p!Bpxp
Definition of Bernoulli Numbers and Power Series Expansion for Exponential Function
=x1(p=1∑∞p!(nx)p)p=0∑∞p!Bpxp
Factorial of 0 and Zeroth Power
=x1(p=0∑∞(p+1)!(nx)p+1)p=0∑∞p!Bpxp
Translation of Index Variable of Summation
=p=0∑∞(p+1)!np+1xpp=0∑∞p!Bpxp
Power of Product
=p=0∑∞i=0∑p(p+1−i)!i!np+1−ixp−iBinp+1−ixp
Definition of Cauchy Product
=p=0∑∞(p+11i=0∑p(ip+1)Binp+1−i)p!xp
multiplying by 1 and Product of Powers
k=0∑n−1kp=p+11i=0∑p(ip+1)Binp+1−i
Definition of Binomial Coefficient
⟹k=1∑nkp=p+11i=0∑p(−1)i(ip+1)Binp+1−i
Equating coefficients:
k=0∑n−1kp=p+11i=0∑p(ip+1)Binp+1−i
⟹k=0∑n−1kp+np=p+11i=0∑p(ip+1)Binp+1−i+(p+11(1p+1)np)
adding np to both sides and Binomial Coefficient with One
⟹k=1∑nkp=p+11i=0∑p(−1)i(ip+1)Binp+1−i
as B1=−21 and Odd Bernoulli Numbers Vanish
Q.E.D.